Search results for "Black hole physics"
showing 10 items of 24 documents
First M87 Event Horizon Telescope Results. III. Data Processing and Calibration
2019
We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5–11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ~1 mJy on baselines to ALMA and ~10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, …
First M87 Event Horizon Telescope Results. II. Array and Instrumentation
2019
The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…
First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
2019
When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…
First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
2019
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated fro…
Verification of Radiative Transfer Schemes for the EHT
2020
Authors: Gold, Roman; Broderick, Avery E.; Younsi, Ziri; Fromm, Christian M.; Gammie, Charles F.; Mościbrodzka, Monika; Pu, Hung-Yi; Bronzwaer, Thomas; Davelaar, Jordy; Dexter, Jason; Ball, David; Chan, Chi-kwan; Kawashima, Tomohisa; Mizuno, Yosuke; Ripperda, Bart; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca Baczko, Anne-Kathrin; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broguiere, Dominique; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chatterjee, Koushik; Chatterjee, Shami; Chen, Ming-T…
QPOs expected in rotating accretion flows around a supermassive black hole
2007
It is well known that rotating inviscid accretion flows with adequate injection parameters around black holes could form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We numerically examine such shock waves in 2D accretion flows with 10−5 to 106 Eddington critical accretion rates around a supermassive black hole with 106 M. As the results, the luminosities show QPO phenomena with modulations of a factor 2–3 and with quasi-periods of a few to several hours.
Accrétion et éjection dans les systèmes binaires X transitoires à trous noirs : le cas de GRS 1716-249
2020
I buchi neri transienti (BHT) sono tra le sorgenti con emissione ai raggi X più luminose della galassia. Grazie all’elevato flusso in banda X e alla loro alta variabilità temporale. queste sorgenti offrono un’opportunità unica per studiare la fisica dell’accrescimento in straordinareie condizioni fisiche. I BHT mostrano episodici outburst caratterizzati da diverse luminosità in banda X e γ, diverse forme spettrali e proprietà della variabilità temporale. L’obiettivo di questa tesi è lo studio della geometria, dei meccanismi e dei processi fisici coinvolti nell’emissione del buco nero transiente GRS 716-249. Di seguito presento l’analisi spettrale e temporale delle osservazioni della GRS 171…
Wind-luminosity evolution in NLS1 AGN 1H 0707−495
2021
Ultra-fast outflows (UFOs) have been detected in the high-quality X-ray spectra of a number of active galactic nuclei (AGN) with fairly high accretion rates and are thought to significantly contribute to the AGN feedback. After a decade of dedicated study, their launching mechanisms and structure are still not well understood, but variability techniques may provide useful constraints. In this work, therefore, we perform a flux-resolved X-ray spectroscopy on a highly accreting and variable NLS1 AGN, 1H 0707-495, using all archival XMM-Newton observations to study the structure of the UFO. We find that the wind spectral lines weaken at higher luminosities, most likely due to an increasing ion…
Neutrino pair annihilation near accreting, stellar-mass black holes
2006
We investigate the energy-momentum deposition due to neutrino-antineutrino annihilation in the vicinity of axisymmetric, accreting black holes (BHs) by numerically ray-tracing neutrino trajectories in a Kerr space-time. Hyperaccreting stellar-mass BHs are widely considered as energy sources that can drive ultrarelativistic outflows with the potential to produce gamma-ray bursts. In contrast to earlier works, we provide an extensive and detailed parameter study of the influence of general relativistic (GR) effects and of different neutrinosphere geometries. These include idealized thin disks, tori, and spheres, or are constructed as non-selfgravitating equilibrium matter distributions for va…
Steady shocks around black holes produced by sub-keplerian flows with negative energy
2005
We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas onto a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since keplerian disks have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. …